マイクロ波(5.8GHz)bcゲーム ランク。
金沢工業大学伊東教授、坂井研究員らの研究グループ。
遠距離を飛ぶドローンへの送電や、ファクトリー・オートメーション機器などへの高効率な送電、
宇宙太陽光発電での地上への送電などの実用化にむけ研究が加速
金沢工業大学 工学部 電気電子工学科 伊東健治教授と坂井尚貴研究員らの研究グループは、このたびマイクロ波(5.8GHz)による無線電力伝送に用いる受電レクテナにおいて、世界最高の電力変換効率となる92.8%を達成しました(1W入力時)。
*レクテナ(rectenna):整流回路(rectifier)付きのアンテナ(antenna)のこと
bcゲーム ランク遠方への電力伝送が可能です。
例えば高圧電線の保守点検をドローンで行う場合、充電の際はその都度作業を中断する必要がありますが、無線電力伝送技術を使えば、長時間にわたって連続して点検を続けることが可能となります。
このようにbcゲーム ランク、屋外でのドローンや飛行船などの移動物体への送電や、ファクトリー・オートメーション機器などへの送電、さらには静止軌道上での宇宙太陽光発電での地上への送電など、さまざまな用途での適用が検討され、世界中の研究者が実現にむけた研究開発にしのぎを削っています。
研究チームでは、今後さらに大電力である10Wの高効率受電技術の確立に取り組むことで、無線電力伝送の実用化を加速させたい考えです。
マイクロ波による無線電力伝送に用いる
受電レクテナで世界最高効率を達成
金沢工業大学・工学部・電気電子工学科の伊東健治教授、坂井尚貴研究員らの研究グループは、マイクロ波(5.8GHz帯)による無線電力伝送に用いる受電レクテナ(rectenna:アンテナ/antenna+整流回路/rectifier)において、世界最高の電力変換効率92.8%を達成しました。
本研究の受電レクテナでは、従来の「受電アンテナ+回路+ダイオード」構成から「受電アンテナ+ダイオード」構成とすることにより回路による損失を削減し、マイクロ波から直流への電力変換の効率を限界まで高めています。これを実現するために、受電アンテナの形状の工夫により、従来の回路の機能を全て受電アンテナで実現しています。また整流用半導体として三菱電機で開発されたマイクロ波特性が良好なガリウム砒素(GaAs)ダイオードを適用することで、高い効率を得ています。
本研究は、無線電力伝送の社会実装を加速するために、エネルギー伝送効率の向上を可能とする基盤技術を確立するために行っています。今回は1W受電での高効率化を達成しましたが、今後は更に大電力である10Wの高効率受電技術の確立に取り組みます。その実現のために、同じ研究プbcゲーム ランクラム内で名古屋大学/名古屋工業大学/三菱電機により開発が行われている高耐圧ガリウム・ナイトライド(GaN) HEMT型のダイオードを用いる計画です。
この研究成果は9月24日開催の電子情報通信学会マイクロ波研究会で報告を予定しています。
この研究は、平成29年度から始まった内閣府・戦略的イノベーションプbcゲーム ランクラム(SIP)「IoE社会のエネルギーシステム」(PD: 柏木孝夫/東工大)のもとで行われたものであり、同研究プbcゲーム ランクラム内の「WPTシステムへの応用を見据えたIoE共通基盤技術」(代表:天野浩/名古屋大学)の一環として実施されたものです。
【ポイント】
受電アンテナからの電波を直流へ変換する整流回路では、回路とダイオードの組み合わせで構成されます。回路では、以下の機能を実現しています。
(1) ダイオードの寄生容量による効率低下を抑制するため、インダクタンスでキャンセル(整合)、
(2) 熱損失を抑制するためにマイクロ波電圧を昇圧し、ダイオードを高電圧・低電流動作、
(3)ダイオードからの高調波放射による損失を抑制するため高調波の閉じ込め
しかし回路自体が損失を有するため、効率が低下していました。今回、受電アンテナに上記(1)〜(3)の機能を持たせることにより、回路を不要とし、受電アンテナにダイオードを直接接続しています。
その結果、回路損失を削減でき、マイクロ波(5.8GHz帯)から直流への電力変換効率92.8%(1W入力時)が得られています。これは5.8GHz帯で世界最高の効率です。
整流用ダイオードとして三菱電機で開発されたマイクロ波特性が良好なガリウム砒素(GaAs)ダイオードを使用。マイクロ波においても低損失にスイッチングが可能であり、高い電力変換効率を有しています。1.の技術と組合わせることにより、その高い効率を引き出すことが可能となりました。
今後、名古屋大学/名古屋工業大学/三菱電機で開発中の窒化ガリウム(GaN)を用いるダイオードを適用することにより、更なる大電力化を狙います。
【研究背景と内容】
本研究は図1に示すマイクロ波(5.8GHz帯)を用いる無線電力伝送の受電レクテナに用いられる技術です。bcゲーム ランク遠方への電力伝送が可能であり、屋内での携帯機器への充電、ファクトリー・オートメーション機器などへの送電、屋外でのドローンや飛行船などの移動物体への送電、さらには静止軌道上での宇宙太陽光発電での地上への送電などへの適用が検討されています。これらの実用化のためには、エネルギーの伝送効率の向上が課題です。本研究での受電レクテナはマイクロ波の電力を受電し、これを直流電力に変換する機能を有しています。これにも高い電力変換効率が求められます。
受電レクテナは、図1に示すように受電アンテナと整流回路から構成されます。受電アンテナでマイクロ波を受信し、これを整流回路において直流電力に変換します。従来の受電レクテナの構成例を図2に示します。整流回路は回路とダイオードにより構成されます。回路は、ダイオードの寄生容量を打ち消す整合、ダイオードを駆動するマイクロ波電圧の昇圧、ダイオードから発生する高調波の閉じ込めを行います。この回路はチップ部品や導体のパターンにより構成されるのですが、電力の損失を生じ、電力変換効率の低下要因になっていました。
本研究では、受電アンテナの新たな構成を考案し、回路の機能を全て受電アンテナで実現しています。その結果、回路による損失を抑制でき、電力変換効率を限界まで向上させることができました。図3に本研究による受電レクテナの構成と写真を示します。以下の動作原理により、受電アンテナに回路を介さずにダイオードを直接接続し、高効率化を図っています。
受電アンテナに短絡スタブを装荷し、スタブのインダクタンスでダイオードの寄生容量のキャンセル(整合)を行っています。
受電アンテナによりマイクロ波電圧を昇圧し、ダイオードを高電圧・低電流動作させ、熱による損失を抑えています。
受電アンテナの入力端をダイオードからの高調波を反射する構造とし、高調波を閉じ込め、直流に変換しています。
以上の機能を有する受電アンテナの効率は99%(計算値)であり、従来の受電アンテナと同等です。また受電アンテナに接続するダイオードには、三菱電機で開発されたマイクロ波特性が良好なガリウム砒素(GaAs)ダイオードを使用しています。マイクロ波においても低損失にスイッチングが可能であり、高い電力変換効率を有しています。本研究による受電アンテナと組み合わせることにより、ダイオードの高い電力変換効率を引き出すことが可能になりました。
その結果、5.8GHz帯整流回路として図4に示す電力変換効率92.8%(1W入力時)が得られています。これは図5に示すように5.8GHz帯整流回路のなかで世界最高の効率です。また図5には、本研究室が開発した1Wを超える整流回路のなかで高い電力変換効率を達成した整流回路を示しています。これはガリウム砒素電界効果トランジスタを用いた整流回路ICで、5W入力時に電力変換効率76.6%を得ております。9月15日開催の電子情報通信学会ソサエティ大会で報告しております。
【成果の意義】
1.本研究で受電レクテナ(受電アンテナ+整流回路)での損失を最小化し、最高効率を実現する技術を確立しました。これにより、ダイオードの性能で決まる電力変換効率の限界値を実現することができます。
2.本研究プbcゲーム ランクラムでは、並行して名古屋大学/名古屋工業大学/三菱電機で研究中の窒化ガリウム(GaN) HEMT型のダイオードを適用することにより、大電力化を狙います。令和4年度までの研究期間を通じ10W受電を高効率に実現します。これにより、ドローンなどに対し大電力の無線電力伝送を高効率かつ低価格に行うことが可能となります。その結果、マイクロ波による無線電力伝送の社会実装を加速するものと期待されます。
図 1 マイクロ波による無線電力伝送システム
図2 従来の受電レクテナ(アンテナ+整流回路)の構成
図3 本研究による受電レクテナの構成と写真(外径寸法:32mm x 11mm)
図4 本研究による整流回路の電力変換効率 図5 5.8GHz帯整流回路の性能比較
【無線電力伝送について】
Wireless Power Transfer(WPT)の日本語訳。「ワイヤレス電力伝送」と同義語です。
電気をワイヤレスで伝送する技術で、スマートフォンや電気自動車などへの新たな充電方式として、世界中の研究者が取り組む今一番ホットな研究分野の一つです。
現在は以下の3種類の方式があります。
(1)電磁誘導方式
スマートフォンなどの給電などで実用化されている方式。数kHzの交流を用います。電力伝送距離はミリメートル。
(2)磁界共鳴方式
MITが開発した方式。数10MHzの高周波を用います。伝送距離は数メートル。
(3)マイクロ波方式
電気を電波に変換してアンテナを介して送受信する方式。電波に変換するため、例えば宇宙空間の太陽光発電衛星で発電した電気を地上に伝送することも可能です。使用する電波は、RFID、WiFiあるいは電子レンジなどに使用される920MHz, 2.4GHz、5.8GHzなどを使用します。世界中の研究者が実現にむけた研究開発にしのぎを削っている方式です。本研究は5.8GHzでの成果です。
なお本方式の関しては、令和2年7月4日付けの総務省より「構内における空間伝送型ワイヤレス電力伝送システムの技術的条件- 情報通信審議会からの一部答申 -」において、実用化に向けた制度整備について報道されています。
https://www.soumu.go.jp/menu_news/s-news/01kiban16_02000240.html
このような背景もあり、社会実装に向けた技術開発が盛んに行われています。
【内閣府・戦略的イノベーションプbcゲーム ランクラム(SIP)「IoE社会のエネルギーシステム」について】
内閣府・戦略的イノベーションプbcゲーム ランクラム(SIP)については、以下のHPを参照ください。
https://www.jst.go.jp/sip/aboutSIP.html
「IoE社会のエネルギーシステム」については、以下のHPを参照ください。
https://www.jst.go.jp/sip/p08/index.html
金沢工業大学は下記体制のもと、B-2: エネルギー伝送システムへの応用を見据えた基盤技術(代表:名古屋大 天野教授)に参画しています。
B-2:エネルギー伝送システムへの応用を見据えた基盤技術
【整流回路】
・動作原理
整流回路は家電製品の電源回路でも使われる回路で、例えば60Hzの交流100Vを直流5Vに変換する整流回路が用いられます。マイクロ波も交流ですので、無線電力伝送用整流回路も動作原理は同じです。
下図のように、マイクロ波(交流)を整流用ダイオードに加えますと、出力には負の電圧が反転し、全て正の電圧で出力します。このダイオード出力のマイクロ波がコンデンサCに加わると、平均化され、直流出力が得られます。
・マイクロ波電圧の昇圧による熱損失の減少
マイクロ波電力Pは電圧Vと電流Iの積P=V・Iで与えられます。マイクロ波電圧Vを高めるよう設計を行うと、同一電力Pに対し電流Iは減少します。ダイオードの内部抵抗Rによる熱損失はR・I2で与えられます。従い、マイクロ波電圧Vを昇圧し、電流Iを減少させることにより熱損失R・I2でが減少し、電力変換効率を高めることができます。例えば、下図のように電圧を2倍に昇圧すると、電流Iは半分になります。このとき熱損失は1/4になります。本研究では、この昇圧を回路でなくアンテナで行っていることに特長があります。
・ダイオードの寄生容量に対するインダクタンスによる整合について
整流回路に用いるダイオードは、マイクロ波電圧によりON/OFFを繰り返します。実際のダイオードでは完全にOFFにはならず、寄生容量による漏れ電流を生じます。そのため下図に示すように、漏れ電流による直流電圧低下を生じ、効率が低下する問題があります。これを回避するために、ダイオードの外側に容量をキャンセルするインダクタを接続します。これを「整合」と呼びます。整合により、漏れ電流は抑制され、直流電圧を回復させることができます。本研究では、この整合を受電アンテナに設けた短絡スタブで行っています。
・高調波の閉じ込めについて
19
【学会発表情報】
学会名:マイクロ波研究会/アンテナ・伝搬研究会9月24日(オンbcゲーム ランクン開催)
論文タイトル: 先端短絡スタブ装荷ダイポールアンテナを用いる5.8GHz帯1W高効率レクテナ
著者:坂井尚貴・野口啓介・伊東健治(金沢工業大学)
【関連する学会発表情報】
(1)学会名:電子情報通信学会ソサエティ大会9月15日(オンbcゲーム ランクン開催)
論文タイトル::E-PHEMTダイオードを用いる 5.8GHz帯倍電圧整流器MMIC
著者: 小松郁弥、伊東健治、坂井尚貴(金沢工業大学)
(2)学会名:無線電力伝送研究会/電子通信エネルギー技術研究会10月4日(オンbcゲーム ランクン開催))
論文タイトル:ノーマリオフ GaN HEMT を用いたレクテナ用ゲーbcゲーム ランクドアノード型ダイオードの電気的特性
著者:高橋英匡,安藤裕二(名古屋大学),土屋洋一,分島彰男(名古屋工業大学),林宏暁,柳生栄治(三菱電機),桔川洸一,坂井尚貴,伊東健治(金沢工業大学),須田 淳(名古屋大学)